On indirect singular points for meromorphic functions
نویسندگان
چکیده
منابع مشابه
Transcendental Meromorphic Functions with Three Singular Values
Every transcendental meromorphic function f in the plane which has only three critical values satisfies lim inf r→∞ T (r, f) log r ≥ √ 3
متن کاملSlow Escaping Points of Meromorphic Functions
We show that for any transcendental meromorphic function f there is a point z in the Julia set of f such that the iterates fn(z) escape, that is, tend to ∞, arbitrarily slowly. The proof uses new covering results for analytic functions. We also introduce several slow escaping sets, in each of which fn(z) tends to ∞ at a bounded rate, and establish the connections between these sets and the Juli...
متن کاملFixed-points and uniqueness of meromorphic functions
Let () () z g z f , be two nonconstant meromorphic functions, and let k n, be two positive integers with. 7 3 + ≥ k n If () () k n f and () () k n g share () z f z CM; and () z g share , IM ∞ then (1) () () z tg z f = for ; 2 ≥ k (2) either () () 2 2 2 1 , cz cz e c z g e c z f − = = or () () z tg z f = for , 1 = k where , , 2 1 c c and c are three nonzero constants satisfying () 1 4 2 2 1 2 − ...
متن کاملCritical Points of Functions on Singular Spaces
We compare and contrast various notions of the “critical locus” of a complex analytic function on a singular space. After choosing a topological variant as our primary notion of the critical locus, we justify our choice by generalizing Lê and Saito’s result that constant Milnor number implies that Thom’s af condition is satisfied.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 2011
ISSN: 0386-5991
DOI: 10.2996/kmj/1301576757